3.625 \(\int \frac{d+e x^2}{(a+b \sinh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=247 \[ \frac{e \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{4 b^2 c^3}-\frac{3 e \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^3}-\frac{e \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^3}-\frac{d \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{b^2 c}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac{d \sqrt{c^2 x^2+1}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{c^2 x^2+1}}{b c \left (a+b \sinh ^{-1}(c x)\right )} \]

[Out]

-((d*Sqrt[1 + c^2*x^2])/(b*c*(a + b*ArcSinh[c*x]))) - (e*x^2*Sqrt[1 + c^2*x^2])/(b*c*(a + b*ArcSinh[c*x])) - (
d*CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(b^2*c) + (e*CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])
/(4*b^2*c^3) - (3*e*CoshIntegral[(3*(a + b*ArcSinh[c*x]))/b]*Sinh[(3*a)/b])/(4*b^2*c^3) + (d*Cosh[a/b]*SinhInt
egral[(a + b*ArcSinh[c*x])/b])/(b^2*c) - (e*Cosh[a/b]*SinhIntegral[(a + b*ArcSinh[c*x])/b])/(4*b^2*c^3) + (3*e
*Cosh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcSinh[c*x]))/b])/(4*b^2*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.47568, antiderivative size = 239, normalized size of antiderivative = 0.97, number of steps used = 15, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {5706, 5655, 5779, 3303, 3298, 3301, 5665} \[ \frac{e \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{3 e \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{e \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b^2 c^3}-\frac{d \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b^2 c}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b^2 c}-\frac{d \sqrt{c^2 x^2+1}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{c^2 x^2+1}}{b c \left (a+b \sinh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/(a + b*ArcSinh[c*x])^2,x]

[Out]

-((d*Sqrt[1 + c^2*x^2])/(b*c*(a + b*ArcSinh[c*x]))) - (e*x^2*Sqrt[1 + c^2*x^2])/(b*c*(a + b*ArcSinh[c*x])) - (
d*CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b])/(b^2*c) + (e*CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b])/(4*b^2*
c^3) - (3*e*CoshIntegral[(3*a)/b + 3*ArcSinh[c*x]]*Sinh[(3*a)/b])/(4*b^2*c^3) + (d*Cosh[a/b]*SinhIntegral[a/b
+ ArcSinh[c*x]])/(b^2*c) - (e*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(4*b^2*c^3) + (3*e*Cosh[(3*a)/b]*Sin
hIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b^2*c^3)

Rule 5706

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] &&
 (p > 0 || IGtQ[n, 0])

Rule 5655

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1
))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c^2*x^2], x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx &=\int \left (\frac{d}{\left (a+b \sinh ^{-1}(c x)\right )^2}+\frac{e x^2}{\left (a+b \sinh ^{-1}(c x)\right )^2}\right ) \, dx\\ &=d \int \frac{1}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx+e \int \frac{x^2}{\left (a+b \sinh ^{-1}(c x)\right )^2} \, dx\\ &=-\frac{d \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}+\frac{(c d) \int \frac{x}{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )} \, dx}{b}+\frac{e \operatorname{Subst}\left (\int \left (-\frac{\sinh (x)}{4 (a+b x)}+\frac{3 \sinh (3 x)}{4 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{b c^3}\\ &=-\frac{d \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}+\frac{d \operatorname{Subst}\left (\int \frac{\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{b c}-\frac{e \operatorname{Subst}\left (\int \frac{\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{(3 e) \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}\\ &=-\frac{d \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}+\frac{\left (d \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{b c}-\frac{\left (e \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{\left (3 e \cosh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{\left (d \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{b c}+\frac{\left (e \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{\left (3 e \sinh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}\\ &=-\frac{d \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{e x^2 \sqrt{1+c^2 x^2}}{b c \left (a+b \sinh ^{-1}(c x)\right )}-\frac{d \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac{a}{b}\right )}{b^2 c}+\frac{e \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac{a}{b}\right )}{4 b^2 c^3}-\frac{3 e \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right ) \sinh \left (\frac{3 a}{b}\right )}{4 b^2 c^3}+\frac{d \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b^2 c}-\frac{e \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b^2 c^3}+\frac{3 e \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b^2 c^3}\\ \end{align*}

Mathematica [A]  time = 0.934752, size = 190, normalized size = 0.77 \[ -\frac{\sinh \left (\frac{a}{b}\right ) \left (4 c^2 d-e\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )-4 c^2 d \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )+\frac{4 b c^2 d \sqrt{c^2 x^2+1}}{a+b \sinh ^{-1}(c x)}+\frac{4 b c^2 e x^2 \sqrt{c^2 x^2+1}}{a+b \sinh ^{-1}(c x)}+3 e \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )+e \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )-3 e \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )}{4 b^2 c^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/(a + b*ArcSinh[c*x])^2,x]

[Out]

-((4*b*c^2*d*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x]) + (4*b*c^2*e*x^2*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x])
+ (4*c^2*d - e)*CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] + 3*e*CoshIntegral[3*(a/b + ArcSinh[c*x])]*Sinh[(3*
a)/b] - 4*c^2*d*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] + e*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] - 3*
e*Cosh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])])/(4*b^2*c^3)

________________________________________________________________________________________

Maple [A]  time = 0.115, size = 438, normalized size = 1.8 \begin{align*}{\frac{1}{c} \left ({\frac{e}{8\,b{c}^{2} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( 4\,{c}^{3}{x}^{3}-4\,{c}^{2}{x}^{2}\sqrt{{c}^{2}{x}^{2}+1}+3\,cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) }+{\frac{3\,e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,3\,{\it Arcsinh} \left ( cx \right ) +3\,{\frac{a}{b}} \right ) }-{\frac{e}{8\,b{c}^{2} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( 4\,{c}^{3}{x}^{3}+3\,cx+4\,{c}^{2}{x}^{2}\sqrt{{c}^{2}{x}^{2}+1}+\sqrt{{c}^{2}{x}^{2}+1} \right ) }-{\frac{3\,e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{-3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-3\,{\it Arcsinh} \left ( cx \right ) -3\,{\frac{a}{b}} \right ) }+{\frac{d}{2\,b \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) }+{\frac{d}{2\,{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }-{\frac{e}{8\,b{c}^{2} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) }-{\frac{e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }-{\frac{d}{2\,b \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) }-{\frac{d}{2\,{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) }+{\frac{e}{8\,b{c}^{2} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) } \left ( cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) }+{\frac{e}{8\,{c}^{2}{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(a+b*arcsinh(c*x))^2,x)

[Out]

1/c*(1/8*(4*c^3*x^3-4*c^2*x^2*(c^2*x^2+1)^(1/2)+3*c*x-(c^2*x^2+1)^(1/2))*e/c^2/b/(a+b*arcsinh(c*x))+3/8/c^2*e/
b^2*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)-1/8/c^2*e/b*(4*c^3*x^3+3*c*x+4*c^2*x^2*(c^2*x^2+1)^(1/2)+(c^2*x^2+1)
^(1/2))/(a+b*arcsinh(c*x))-3/8/c^2*e/b^2*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)+1/2*(c*x-(c^2*x^2+1)^(1/2))*d
/b/(a+b*arcsinh(c*x))+1/2*d/b^2*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)-1/8*(c*x-(c^2*x^2+1)^(1/2))*e/c^2/b/(a+b*arcsi
nh(c*x))-1/8/c^2*e/b^2*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)-1/2/b*d*(c*x+(c^2*x^2+1)^(1/2))/(a+b*arcsinh(c*x))-1/2/
b^2*d*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)+1/8/c^2/b*e*(c*x+(c^2*x^2+1)^(1/2))/(a+b*arcsinh(c*x))+1/8/c^2/b^2*e*e
xp(-a/b)*Ei(1,-arcsinh(c*x)-a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{3} e x^{5} +{\left (c^{3} d + c e\right )} x^{3} + c d x +{\left (c^{2} e x^{4} +{\left (c^{2} d + e\right )} x^{2} + d\right )} \sqrt{c^{2} x^{2} + 1}}{a b c^{3} x^{2} + \sqrt{c^{2} x^{2} + 1} a b c^{2} x + a b c +{\left (b^{2} c^{3} x^{2} + \sqrt{c^{2} x^{2} + 1} b^{2} c^{2} x + b^{2} c\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )} + \int \frac{3 \, c^{5} e x^{6} +{\left (c^{5} d + 6 \, c^{3} e\right )} x^{4} +{\left (2 \, c^{3} d + 3 \, c e\right )} x^{2} +{\left (3 \, c^{3} e x^{4} +{\left (c^{3} d + c e\right )} x^{2} - c d\right )}{\left (c^{2} x^{2} + 1\right )} + c d +{\left (6 \, c^{4} e x^{5} +{\left (2 \, c^{4} d + 7 \, c^{2} e\right )} x^{3} +{\left (c^{2} d + 2 \, e\right )} x\right )} \sqrt{c^{2} x^{2} + 1}}{a b c^{5} x^{4} +{\left (c^{2} x^{2} + 1\right )} a b c^{3} x^{2} + 2 \, a b c^{3} x^{2} + a b c +{\left (b^{2} c^{5} x^{4} +{\left (c^{2} x^{2} + 1\right )} b^{2} c^{3} x^{2} + 2 \, b^{2} c^{3} x^{2} + b^{2} c + 2 \,{\left (b^{2} c^{4} x^{3} + b^{2} c^{2} x\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) + 2 \,{\left (a b c^{4} x^{3} + a b c^{2} x\right )} \sqrt{c^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

-(c^3*e*x^5 + (c^3*d + c*e)*x^3 + c*d*x + (c^2*e*x^4 + (c^2*d + e)*x^2 + d)*sqrt(c^2*x^2 + 1))/(a*b*c^3*x^2 +
sqrt(c^2*x^2 + 1)*a*b*c^2*x + a*b*c + (b^2*c^3*x^2 + sqrt(c^2*x^2 + 1)*b^2*c^2*x + b^2*c)*log(c*x + sqrt(c^2*x
^2 + 1))) + integrate((3*c^5*e*x^6 + (c^5*d + 6*c^3*e)*x^4 + (2*c^3*d + 3*c*e)*x^2 + (3*c^3*e*x^4 + (c^3*d + c
*e)*x^2 - c*d)*(c^2*x^2 + 1) + c*d + (6*c^4*e*x^5 + (2*c^4*d + 7*c^2*e)*x^3 + (c^2*d + 2*e)*x)*sqrt(c^2*x^2 +
1))/(a*b*c^5*x^4 + (c^2*x^2 + 1)*a*b*c^3*x^2 + 2*a*b*c^3*x^2 + a*b*c + (b^2*c^5*x^4 + (c^2*x^2 + 1)*b^2*c^3*x^
2 + 2*b^2*c^3*x^2 + b^2*c + 2*(b^2*c^4*x^3 + b^2*c^2*x)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1)) + 2*(a
*b*c^4*x^3 + a*b*c^2*x)*sqrt(c^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e x^{2} + d}{b^{2} \operatorname{arsinh}\left (c x\right )^{2} + 2 \, a b \operatorname{arsinh}\left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

integral((e*x^2 + d)/(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x^{2}}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(a+b*asinh(c*x))**2,x)

[Out]

Integral((d + e*x**2)/(a + b*asinh(c*x))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/(b*arcsinh(c*x) + a)^2, x)